The Deflation Accelerated Schwarz Method for CFD
نویسندگان
چکیده
Accurate simulation of glass melting furnaces requires the solution of very large linear algebraic systems of equations. To solve these equations efficiently a Schwarz domain decomposition (multi-block) method can be used. However, it can be observed that the convergence of the Schwarz method deteriorates when a large number of subdomains is used. This is due to small eigenvalues arising from the domain decomposition which slow down the convergence. Recently, a deflation approach was proposed to solve this problem using constant approximate eigenvectors. This paper generalizes this view to piecewise linear vectors and results for two CFD problems are presented. It can be observed that the number of iterations and wall clock time decrease considerably. The reason for this is that the norm of the initial residual is much smaller and the rate of convergence is higher.
منابع مشابه
Random Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula
In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...
متن کاملApplication of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملNewton-krylov-schwarz: an Implicit Solver for Cfd
Newton Krylov methods and Krylov Schwarz domain decomposition methods have begun to become established in computational uid dynamics CFD over the past decade The former employ a Krylov method inside of Newton s method in a Jacobian free manner through directional di erencing The latter employ an overlapping Schwarz domain decomposition to derive a preconditioner for the Krylov accelerator that ...
متن کاملNewton-krylov-schwarz Methods in Cfd
Newton-Krylov methods are potentially well suited for the implicit solution of nonlinear problems whenever it is unreasonable to compute or store a true Jacobian. Krylov-Schwarz iterative methods are well suited for the parallel implicit solution of multidimensional systems of boundary value problems that arise in CFD. They provide good data locality so that even a high-latency workstation netw...
متن کاملNewton-krylov-schwarz Methods in Cfd 1
Newton-Krylov methods are potentially well suited for the implicit solution of nonlinear problems whenever it is unreasonable to compute or store a true Jacobian. Krylov-Schwarz iterative methods are well suited for the parallel implicit solution of multidimensional systems of boundary value problems that arise in CFD. They provide good data locality so that even a high-latency workstation netw...
متن کامل